P.R. GOVT. COLLEGE (AUTONOMOUS), KAKINADA

II year B.Sc., Degree Examinations - IV Semester Mathematics Course-IV: REAL ANALYSIS (w.e.f. 2020-21 Admitted Batch)

Total Hrs. of Teaching-Learning: 75 @ 6 hr/Week Total credits: 04

OBJECTIVES:

- Be able to understand and write clear mathematical statements and proofs.
- Be able to apply appropriate method for checking whether the given sequence or series is convergent.
- Be able to develop students ability to think and express themselves in a clear logical way. This curriculum gives an opportunity to learn about the derivatives of functions and its applications.

Course Outcomes:

After successful completion of this course, the student will be able to

- get clear idea about the real numbers and real valued functions.
- obtain the skills of analyzing the concepts and applying appropriate methods for testingconvergence of a sequence/ series.
- Test the continuity and differentiability and Riemann integration of a function.
- Know the geometrical interpretation of mean value theorems.

UNIT I (12 Hours)

Introduction of Real Numbers (No question is to be set from this portion)

Real Sequences: Sequences and their limits, Range and Boundedness of Sequences, Limit of a sequence and Convergent sequence. The Cauchy's criterion, properly divergent sequences, Monotone sequences, Necessary and Sufficient condition for Convergence of Monotone Sequence, Limit Point of Sequence, Subsequences, Cauchy Sequences – Cauchy's general principle of convergence theorem.

UNIT II: (12 Hours)

INFINITIE SERIES:

Series : Introduction to series, convergence of series. Cauchy's general principle of convergence forseries tests for convergence of series, Series of Non-Negative Terms.

- 1. P-test
- 2. Cauchy's nth root test or Root Test.
- 3. D'-Alemberts' Test or Ratio Test.
- 4. Alternating Series Leibnitz Test.

UNIT III: (12 Hours)

CONTINUITY:

Limits: Real valued Functions, Boundedness of a function, Limits of functions. Some extensions of the limitconcept, Infinite Limits. Limits at infinity. (No question is to be set from this portion).

Continuous functions: Continuous functions, Combinations of continuous functions, Continuous Functionson interval.

UNIT IV: (12 Hours)

DIFFERENTIATION AND MEAN VALUE THEOREMS: The derivability of a function, on an interval, at a point, Derivability and continuity of a function, Graphical meaning of the Derivative, Mean value Theorems; Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem

UNIT V: (12 Hours)

RIEMANN INTEGRATION: Riemann Integral, Riemann integral functions, Darboux theorem. Necessary and sufficient condition for R – integrability, Properties of integrable functions, Fundamental theorem of integral calculus, First mean value Theorem.

Co-Curricular Activities (15 Hours)

Seminar/ Quiz/ Assignments/ Real Analysis and its applications / Problem Solving. **TEXT BOOK:**

1. Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, published by JohnWiley.

REFERENCE BOOKS:

- 1. A Text Book of B.Sc Mathematics by B.V.S.S. Sarma and others, published by S. Chand &Company Pvt. Ltd., New Delhi.
- 2. Elements of Real Analysis as per UGC Syllabus by Shanthi Narayan and Dr. M.D. Raisinghania, published by S. Chand & Company Pvt. Ltd., New Delhi

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-IV

Unit	TOPIC	S.A.Q	E.Q	Marks allotted to the Unit
I	Real Sequences	2	2	30
II	Infinite Series	2	2	30
III	Continuity	2	2	30
IV	Differentiation And Mean value theorems	1	2	25
V	Riemann Integrations	1	2	25
Total		8	10	140

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (10 marks)

Short answer questions $: 4 \times 5 = 20$

Essay questions : $4 \times 10 = 40$

......

Total Marks = 60

P.R. Government College (Autonomous), Kakinada II Year, B.Sc., Degree Examinations - IV Semester Mathematics Course: Real Analysis Paper–IV (Model Paper ((w.e.f. 2020-21 Admitted Batch)

Time: 2Hrs 30 min Max. Marks: 60

PART-I

Answer any FOUR questions. Each question carries FIVE marks.

4 X 5 M=20 M

1. Show that $\lim_{n \to \infty} \left| \sqrt{\frac{1}{n^2 + 1}} + \sqrt{\frac{1}{n^2 + 2}} + \dots + \sqrt{\frac{1}{n^2 + n}} \right| = 1.$

- 2. Prove that every convergent sequence is a Cauchy sequence
- 3. If $\sum u_n$ convergences absolutely then prove that $\sum u_n$ converges.
- 4. Test for the convergence of $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} \chi^{n-1} (\chi > 0)$
- 5. Examine for continuity the function f defined by f(x) = |x| + |x 1| at 0 and 1
- 6. Prove that $f: R \to R$ given by $f(x) = x^2$ is a continuous function on R, but not uniformly continuous on R
- 7. Show that $f(x) = x \sin(1/x)$, $x \ne 0$; f(x) = 0, x = 0 is continuous but not derivable at x = 0.
- 8. State and prove fundamental theorem of Integral Calculus.

PART - II

Answer ALL questions. Each question carries Eight marks.

5 X 8 M = 40 M

9 (a) . State and Prove monotone convergence theorem.

(OR)

- (b). Prove that the sequence $\{s_n\}$ defined by $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ is convergent
- 10 (a) . State and prove Cauchy's n^{th} root test .

(OR)

- (b) Examine the convergence of $\sum_{n=1}^{\infty} (\sqrt{n^4 + 1} \sqrt{n^4 1})$.
- 11 (a) If f is a continuous function on [a, b], then prove that it is uniformly continuous on [a, b]

(OR)

- (b) Test the continuity of of $f(x) = \frac{e^{1/x} e^{-1/x}}{e^{1/x} + e^{-1/x}}$ if $x \neq 0$ and f(0) = 0 at x = 0.
- 12 (a) Show that $\frac{v-u}{1+v^2} < tan^{-1}v tan^{-1}u < \frac{v-u}{1+u^2}$ for 0 < u < v. Hence deduce that $\frac{\pi}{4} + \frac{3}{25} < tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$.

(OR

- (b) State and Prove Cauchy's mean value theorem
- 13 (a) Show that f(x) = 3x + 1 is integrable on [1,2] and $\int_{1}^{2} (3x + 1) dx = \frac{11}{2}$.

(OR)

(b) State and Prove first mean value theorem of integral calculus.